傾斜角及び回転角を有する鋼床板デッキプレートの 片面サブマージアーク溶接

One-side Submerged Arc Welding of Steel Floor Deck Plate having Inclination and Rotation Angles

Kenji IWASAKI

西田正人*5 Masato NISHIDA

田 村 修 一*1 Shuichi TAMURA

三 枝 洋 昭^{*2} Hiroaki SAEGUSA

村 上 貴 紀*³ Takanori MURAKAMI

要旨

「横浜港臨港道路南本牧ふ頭本牧線(I・Ⅱ工区)高架橋上部工事」の鋼床版デッキプレートの縦シームの現場突合せ溶接は、 支点ブロックの地組立溶接を除き、サブマージアーク溶接による施工を計画している。本橋の縦断勾配と横断勾配は大きく、過 去の実績で例が少ない条件のため、本橋の勾配でのサブマージアーク溶接の溶接条件を確認するために溶接施工試験を行った。

キーワード:片面サブマージアーク溶接,溶接施工試験

1. はじめに

現在建設中の南本牧ふ頭と本牧ふ頭を連結する横浜港 臨港道路は、ふ頭間を連結することでコンテナ輸送効率 化を図るとともに、高速道路ネットワークとの直結によ る横浜港の集荷環境が強化され、さらに南本牧ふ頭への アクセスとして大規模災害時のリダンダンシー確保にも 寄与する。

「横浜港臨港道路南本牧ふ頭本牧線(Ⅰ・Ⅱ工区)高 架橋上部工事」は、I工区のIA1~IP3の3径間連続非 合成鈑桁、Ⅱ工区の I P3~ Ⅱ P4の4径間連続鋼床版箱桁 (上り線、下り線) であり、本工事の工事概要を下記に 示す。

発注者:国土交通省 関東地方整備局 京浜港湾事務所 工事名:横浜港臨港道路南本牧ふ頭本牧線(Ⅰ・Ⅱ工

区) 高架橋上部工事

路線名:臨港道路南本牧ふ頭本牧線

受注者:MMB·宫地特定建設工事共同企業体

*1千葉工場技術研究所生産技術グループ副主任

*5 工事本部橋梁工事部橋梁工事グループ係長

^{*2}千葉工場技術研究所生産技術グループ

^{*3}千葉工場技術研究所生産技術グループグループリーダー

^{*4} エム・エム ブリッジ(株)

Ⅱ工区の鋼床版箱桁における鋼床版デッキプレートの 縦シームの現場突合せ溶接は、支点ブロックの地組立溶 接を除き、片面サブマージアーク溶接による施工を計画 している。本橋の縦断勾配と横断勾配は大きく、過去の 実績で例が少ない条件のため、本橋の勾配での片面サブ マージアーク溶接の溶接条件を確認するために溶接施工 試験を行った。

本工事範囲のうち、特に縦断勾配と構断勾配が大きい 「Ⅱ工区上り線(図-1)」に着目し、この橋梁の縦断勾 配(鋼重等によるたわみ分のキャンバーも含む)と横断 勾配を格点ごとにまとめたものを表-1に示す。

上り線	縦断勾配(%)	横断勾配(%)	上り線	縦断勾配(%)	横断勾配(%)
S1			C26	7.4	3.6
C1	5.0	1.5	C27	7.3	3.0
C2	5.2	1.5	C28	7.1	2.4
C3	5.4	1.5	C29	7.0	1.8
C4	5.6	1.5	C30	6.8	1.2
C5	5.8	1.5	C31	6.7	0.6
C6	6.0	1.6	C32	6.6	0.03
C7	6.2	2.0	C33	6.6	0.6
C8	6.5	2.3	C34	6.7	1.2
C9	6.7	2.7	C35	6.7	1.7
IIP1	6.8	2.9	C36	6.6	2.3
C10	6.9	3.4	II P3	地糸	且立
C11	7.0	3.7	C37	6.3	3.5
C12	7.1	4.1	C38	6.1	4.1
C13	7.1	4.4	C39	5.9	4.7
C14	7.0	4.8	C40	5.6	5.2
C15	7.0	5.1	C41	5.3	5.8
C16	6.9	5.5	C42	4.8	6.0
C17	6.8	5.9	C43	4.2	6.0
C18	6.9	6.0	C44	3.7	6.0
C19	6.9	6.0	C45	3.2	5.8
C20	7.1	6.0	C46	2.6	5.3
II P2	7.2	6.1	C47	2.0	4.9
C21	7.4	6.0	C48	1.5	4.5
C22	7.5	5.9	C49	1.0	4.0
C23	7.6	5.4	C50	0.4	3.6
C24	7.6	4.8	C51	0.1	3.2
C25	7.5	4.2	S2		

表-1 || エ区上り線の縦断勾配と構断勾配

2. 溶接施工試験要領

(1) 鋼材

試験体の材質は全てSM490YAとした。使用した鋼材の化学成分及び機械的性質を表-2に示す。

表-2 鋼材の化学成分及び機械的性質

鋼材の種類 板厚 (mm) C Si Mn P S Cu SM490YA 12 0.16 0.28 1.40 0.01 0.00 0.01								(%)
SM490YA 12 0.16 0.28 1.40 0.01 0.00 0.01	鋼材の種類	板厚 (mm)	с	Si	Mn	Р	s	Cu
	SM490YA	12	0.16	0.28	1.40	0.01	0.00	0.01
Ni Mo Cr Nb Ceq Pcm			Ni	Mo	Cr	Nb	Ceq	Pcm
0.01 0.01 0.04 0.01 0.41 0.24			0.01	0.01	0.04	0.01	0.41	0.24
				_				
降伏点 (耐力) 引張強さ 伸び			降伏点 (耐力)	引張強さ	伸び			
N/mm ² %			N/1	mm ²	%			
436 552 27			436	552	27			

(2) 試験体形状

試験体形状を図-2に示す。また、試験体は再利用したため、試験体の幅は300~500mmとなった。

図-2 試験体形状

(3) 開先形状

開先形状は、製作誤差及び架設誤差を考慮し、ルート ギャップは1~10mm、目違いは道路橋示方書の規定の 通り板厚の10%以下となる1.2mm以下で計画しているこ とから、本試験では**表-3**に示す通りルートギャップは 標準、最小及び最大の3種類、目違いは0mmと最大の2 種類とし、合計6ケースの組み合わせとした。なお、開 先角度は全て50°とした。

表一3 サブマージアーク溶接による鋼床版デッキプレートの開 先形状及び本試験での開先形状

開先形状	本討	(験の開先形状()	目標値)
$\theta = 50^{\circ} \pm 5^{\circ}$	試験体	ルートギャップ	目違い
* *	タイプ	G(mm)	S(mm)
	1	1	0
_ \ /	2	1	1.2
↓ \ "↓	3	5	0
	4	5	1.2
G=5+5	5	10	0
-4	6	10	1.2

(4) 本試験の縦断勾配及び構断勾配

過去の実績で、縦シームの横断6%の経験が少ないこ とから、表-4に示すように、本試験では縦断勾配は最 小値1%と最大値8%とその中間値4%の3ケース、横断勾 配は最大値の6%のみを想定して行った。試験体設置状 況を**写真-1**に示す。

目違いの方向は、図-3に示すように横断勾配(回転 角)により表側のアンダーカットが生じやすく、さらに 溶込み不良が生じやすくなる横断勾配が高い側の板面が 高くなるようにした。

表-4 本試験の縦断勾配及び構断勾配

写真一1 試験体設置状況

図-3 目違いの方向

(5) 溶接材料

溶接材料はデッキプレートの片面サブマージアーク溶 接で一般的に使用している銘柄とした。本試験で使用し た溶接材料を表-5に示す。

3. 溶接施工試験結果

溶接条件及び試験結果を表-6に示す。なお、各勾配 及び開先形状で溶接条件を微調整して数体の溶接を行っ たなかで、溶接外観が良好であった試験体のみ記載し、 備考欄にその条件での溶接外観の特徴等を示す。溶接施 工状況を**写真-2**に示す。

Case1(縦断勾配1%、横断勾配6%)及びCase2(縦断 勾配4%、横断勾配6%)では、全体的に溶接外観は良好 である。

ただし、Case1及びCase2のルートギャップ1mmの場合 の裏波ビードは、写真-3のマクロ写真で示すように横 断勾配の影響により横断勾配が低い側での裏波の止端角 度が小さくなった。この裏波ビード形状は、実施工でグ ラインダーでルートギャップを3mm程度まで広げるな どの対応で改善できると考える。また、ルートギャップ 10mmの場合、電流が720A程度では横断勾配の影響によ り良好な裏波ビードが形成されず、溶接条件を変化させ て試験を行った結果、電流を750Aまで上げることによ り改善された。なお、Case2では入熱量が8,250J/mmと高 く、溶接部の機械的性質の確認が必要であると判断し、 機械試験を実施した。詳細については次項に記載する。

Case2のルートギャップ10mm及びCase3(縦断勾配8%、横断勾配6%)では、写真-4に示すように表面の ビード外観にポックマーク(ガスが抜けた跡)が生じる 結果となった。これは入熱量が大きくなったことによる 影響であると考えられる。ポックマークを残しておくと 放射線探傷試験の際にX線フィルムに撮影され、ブロー ホールやスラグ巻込みなどの内部きずとの識別が難しく なるため、内部きず検査前にグラインダー等により除去 する必要がある。

Case3では、ルートギャップ1mmで表ビードの余盛高 さが許容値を超える結果となったが、溶接速度または充

	溶接材料											
波技士法	溶接ワイヤ		フラックス		充均	真材	裏当て材					
浴按力法	銘柄 (径)	メーカー	銘柄 (粒度)	メーカー	銘柄 (径)	メーカー	銘柄	メーカー				
サブマ <i>ー</i> ジ アーク溶接	Y−D (4.8¢)	日鐵住金 溶接工業	YF-15A (20×200)	日鐵住金溶接工業	$\begin{array}{c} YK-C\\ (1\phi \times 1) \end{array}$	日鐵住金 溶接工業	CBM-G21	DONGIL CERAMICS				

表一5 溶接材料

填材の散布高さを調整することにより、余盛高さを許容 値内にすることは可能と判断する。しかし、ルートギャ ップ5mmでは、入熱量が大きくなったことにより写真 -5に示すように表ビードに許容値を超えるアンダーカ ットが連続的に生じ、溶接条件を微調整しても改善でき なかった。よって、Case3ではサブマージアーク溶接は 適用できないと判断した (ルートギャップ10mmの試験 は行わなかった)。Case3のアンダーカットを写真-6に 示すが、このような場合、アンダーカットが生じた箇所 を炭酸ガスアーク溶接にて2パス目の溶接を行うことを 前提とした溶接方法とすることが考えられるが、2パス 溶接を行った箇所の内部きず検査の管理や炭酸ガスアー ク溶接の防風対策、溶接作業者の配置など課題が多く、 採用にあたっては十分な検討が必要である。

その後、施工条件が最も厳しいルートギャップ10mm にて縦断勾配と横断勾配を変化させて試験を行った結 果、縦断勾配6%で横断勾配2%が限界と判断した。 Case4として行った縦断勾配6%+横断勾配2%での施工 試験のマクロ写真を**写真-7**に、結果をまとめたものを 表-7に示す。

なお、本橋の横断勾配に0%がほぼないため、縦断勾 配のみ付加した条件(横断勾配0%)は実施していない。

		開先	形状			溶接条件			
勾配	試験体 タイプ	ルート キ*ャップG (mm)	目違いS (mm)	電流 (A)	電圧 (V)	速度 (mm/min)	入熱量 (J/mm)	充填材 散布量	備考
	1	1	0	720	31	250	5,357	80%	裏波ビードの幅が小さいため、横断が低い側の止端の角度が小さい。
	2	1	1.2	720	31	240	5,580	80%	裏波ビードの幅が小さいため、横断が低い側の止端の角度が小さい。
Case1	3	5	0	720	33	220	6,480	100%	-
縦町1% 横断6%	4	5	1.2	720	32	220	6,284	100%	-
	5	10	0	750	34	200	7,650	110%	横断勾配の影響により、電流を高くしたほうが裏波ビードの外観はよい。
	6	10	1.2	750	34	200	7,650	110%	横断勾配の影響により、電流を高くしたほうが裏波ビードの外観はよい。
	1	1	0	720	33	220	6,480	80%	裏波ビードの幅が小さいため、横断が低い側の止端の角度が小さい。
	2	1	1.2	720	35	220	6,873	80%	裏波ビードの幅が小さいため、横断が低い側の止端の角度が小さい。
Case2	3	5	0	720	33	200	7,128	100%	_
縦断4% 横断6%	4	5	1.2	720	33	200	7,128	100%	目違いの影響により、表ビードの横断が高い側にアンダーカットが多少生じる。
	5	10	0	750	33	180	8,250	110%	表ビードにポックマーク(ガスが抜けた跡)が多くなる。
	6	10	1.2	750	33	180	8,250	110%	表ビードにポックマーク(ガスが抜けた跡)が多くなる。 日違いの影響により、表ビードの横断が高い側にアンダーカットが多少生じる。
	1	1	0	720	33	200	7,128	80%	表ビードにポックマーク(ガスが抜けた跡)が多くなる。 表ビードの余盛りが高い(凸ビード) 裏波ビードの幅が小さいため、横断が低い側の止端の角度が小さい。
Case3	2	1	1.2	720	33	200	7,128	80%	表ビードにポックマーク(ガスが抜けた跡)が多くなる。 表ビードの余盛りが高い(凸ビード)
縦断8% 横断6%	3	5	0	720	33	180	7,920	100%	表ビードにポックマーク(ガスが抜けた跡)が多くなる。 縦断勾配及び入熱量の影響により、表ビードに許容値を超えるアンダーカットが 生じる。
	4	5	1.2	720	33	180	7,920	100%	表ビードにボックマーク(ガスが抜けた跡)が多くなる。 縦断勾配及び入熱量の影響により、表ビードに許容値を超えるアンダーカットが 生じる。

表一6 Case1~3溶接条件・試験結果

写真-2 溶接施工状況

写真-3 マクロ写真Case2(縦断4%横断6%)G=1,S=1.2

写真-4 表面ビード外観写真Case3(縦断8%横断6%) G=1,S=1.2

写真-6 表面ビード外観写真Case3(縦断8%横断6%) G=5,S=1.2

写真-7 マクロ写真Case4(縦断6%横断2%)G=10,S=1.2

表一7 Case4溶接条件・試験結果

			:形状			溶接条件			
勾配	試験体 タイプ	ルート キ*ャップG (mm)	目違いS (mm)	電流 (A)	電圧 (V)	速度 (mm/min)	入熱量 (J/mm)	充填材 散布量	備考
Case4	5	10	0	720	33	180	7,920	110%	縦断勾配及び入熱量の影響により、表ビードの横断が高い側にアンダーカット (許容値内)が多少生じる。
縦断6% 横断2%	6	10	1.2	720	33	180	7,920	110%	縦断勾配及び入熱量の影響により、表ビードの横断が高い側にアンダーカット (許容値内)が多少生じる。

4. 機械試験

(1) 試験要領

Case2(縦断勾配4%、横断勾配6%)において、ルートギャップ10mmの場合、入熱量が8,250J/mmと大きいため、溶接部の機械的性質の確認が必要と判断し、道路橋示方書・同解説Ⅱ鋼橋編を参考に表-8に示す機械試験を実施した。なお、衝撃試験は母材の要求値がないため参考とし、溶接部との比較のため母材部の試験を行った。

衝撃試験片の採取位置は溶接金属部及び熱影響部(フ ユージョンラインから熱影響部側へ1mm)とし、母材 部のノッチ位置はロール方向とロール直角方向の2種類 採取した。

硬さ試験は、表面から2mmの位置と裏面から2mmの 位置とした。

表-8 機械試験項目及び判定基準

試験 の種類	試験項目	試験片形状	試験片 個数	試験方法	判定基準
盟	引張試験	JIS Z 3121 1号	2	JIS Z 2241	引張強さが母材の規格値 以上
	型曲げ試験 (裏曲げ試験)	JIS Z 3122	2	JIS Z 3122	原則として亀裂が生じては ならない
	衝撃試験	JIS Z 2242 Vノッ チ	DEPO 3 HAZ 3 BM 6	JIS Z 2242	参考(母材の要求値がない ため)
	硬さ試験	マクロ試験片	1	JIS Z 2244	参考

(2) 試験結果

引張試験結果を表-9、型曲げ試験結果を表-10、衝 撃試験結果を表-11、硬さ試験結果を図-4,5に示す。 機械試験の結果、引張試験及び型曲げ試験では判定基 準を満足しており、合格であった。ただし、引張強さが 判定基準を少し上回る値であること、参考値であるが熱 影響部のシャルピー吸収エネルギーが各値で40Jである こと、母材と溶接金属の硬さが表面裏面共に同等である ことから、溶接継手の機械的性質を確実に確保するに は、Case2での入熱量(8,250J/mm)を大きく超えること は避けたほうがよいと考える。

表一9 引張試験結果

	試験体	試験片 記号	最大荷重 (N)	引張強さ (N/mm ²)	破断位置	母材の 規格値 (N/mm ²)	合否
Case 縦断 ルート: 目違	Case2 縦断4% 横断6%	T1	246,000	513	溶着 金属部	490~610	合格
	ルートギャップ10mm 目違い 0mm	Т2	247,000	515	溶着 金属部	490~610	合格

	14	-10 空曲り武駅和未	
試験体	試験片 記号	試験結果	合否
Case2 縦断4% 横断6%	B1	き 裂 なし	合格
ルートキ [*] ャップ10mm 目違い 0mm	B2	き 裂 なし	合格

表-11 衝撃試験結果

10 刑曲(ギ計睦)注目

=

試験体	ノ ッチ 位置	試験片 記号	試験温度 (℃)	シャルヒ エネル 各値	:一吸収 <u>ギー(J)</u> 平均値	合否
Case2 縦断4% 横断6%	溶接 金属部	D	0	77 86 83	82	
ルートギャップ10mm 目違い 0mm	熱影響部	н	0	40 41 75	52	_
D ++	母材部 ロール方向	L	0	192 191 212	198	Ι
以 内	母材部 ロール直角	с	0	123 105	109	_

図ー4 硬さ試験結果(表面から2mm)

5. おわりに

本試験の結果、横断勾配が6%の場合は縦断勾配4%ま で、縦断勾配が6%の場合は横断勾配2%までが片面サブ マージアーク溶接の適用の限界とした。また、溶接継手 の機械的性質を確実に確保するために、入熱量の上限を 8,500J/mmとした。本溶接試験の標準溶接条件を以下に 示す。なお、上記の勾配を超える箇所は炭酸ガスアーク 溶接にて施工することとした。

- ・電流:700~750A(ルートギャップが大きい場合は 電流を高くする。)
- ·電圧:30~35V
- ・速度:180~250mm/min(ルートギャップや縦断勾 配が大きい場合は速度を遅くする。)
- ·入熱量:8,500J/mm以下
- ・充填材:ルートギャップ1mm⇒80%、5mm⇒100%、 10mm⇒110%

今後は、更なる施工試験や機械試験を実施し、片面サ ブマージアーク溶接における縦断勾配・横断勾配の適用 限界値を確認することと、デッキプレート厚が16mmで の施工試験を実施する予定である。

最後に、本施工試験を行うにあたり、ご指導いただき ました国土交通省関東地方整備局京浜港湾事務所ならび に(一財)港湾空港総合技術センターの関係者の方々、 溶接条件等のご助言をくださいました日鐵住金溶接工業 (株の関係者の方々に対し、深く感謝申し上げます。

2016.3.8 受付